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Abstract. The Tibetan Plateau (TP) plays a vital role in regional and global climate change. The TP has been undergoing 

significant surface warming since 1850, with an air temperature increase of 1.39 K and surface solar dimming resulting from 

decreased incident solar radiation. The causes and impacts of solar dimming on surface warming are unclear. In this study, 

long-term (from 1850–2015) surface downward radiation datasets over the TP are developed by integrating 18 Coupled Model 10 

Intercomparison Project Phase 5 (CMIP5) models and satellite products. The validation results from two ground measurement 

networks show that the generated downward surface radiation datasets have higher accuracy than the mean of multiple CMIP5 

and the fused datasets of reanalysis and satellite products. After analyzing the generated radiation data with four air temperature 

datasets, we found that downward shortwave radiation (DSR) remained stable before 1950 and then declined rapidly at a rate 

of -0.53 W m-2 per decade and that the fastest decrease in DSR is in the southeastern TP. Evidence from site measurements, 15 

satellite observations, reanalysis, and model simulations suggested that TP solar dimming was primarily driven by increased 

anthropogenic aerosols. The TP solar dimming is stronger in summer, at the same time that the increasing magnitude of the 

surface air temperature is the smallest. The cooling effect of solar dimming offsets surface warming on the TP by 0.80 ± 0.28 

K (48.6 ± 17.3%) in summer. It helps us understand the role of anthropogenic aerosols in climate warming, and highlights the 

need for additional studies to be conducted to quantify the influence of air pollution on regional climate change over the TP. 20 

1 Introduction 

The Tibetan Plateau (TP), the so-called Third Pole, covers an area of approximately 2.65 × 102 km2 and has an average 

elevation of more than 4000 m. It contains the largest ice mass outside of the polar regions (Yao et al., 2007) which supplies 

several major rivers that sustain billions of people in China and South Asia, dominating regional social stabilization and 

development. The TP is a weak heat sink in winter but a strong heat source in summer and dominates the atmospheric 25 

circulation (Wu et al., 2015). The mechanical and thermal forcing of the large-scale orography is crucial for the formation of 

the Asian summer monsoon (Boos and Kuang, 2010) and water and heat exchange between the Pacific Ocean and Eurasia 

(Wu et al., 2012). The TP anticyclone transports water vapor and chemical gases into the lower stratosphere (Fu et al., 2006). 

Therefore, the local climate pattern over the TP plays a vital role in the climate in southern China (Xu et al., 2013), the boreal 

climate (Sampe and Xie, 2010), and global climate change (Cai et al., 2017).  30 
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The TP is currently undergoing significant climate change (Yao et al., 2018), such as increased surface air temperature (Kuang 

and Jiao, 2016) and downward longwave radiation (DLR), as well as decreased downward solar radiation (DSR) (You et al., 

2010) which is a solar dimming phenomenon that can impact surface temperatures (Wild et al., 2007) and precipitation (Wild, 

2009). However, the causes of solar dimming over the TP are not yet conclusive (Kuang and Jiao, 2016;Xie and Zhu, 2013;Xie 

et al., 2015). Changes in DSR are mainly controlled by atmospheric clouds and aerosols (Liang et al., 2010) at century-level 35 

scales. You et al. (2013) suggested that aerosols have played an important role in solar dimming over the TP in recent decades, 

while Tang et al. (2011) speculated that solar dimming over the TP might be caused by cloud cover changes that have a 

comparable influence on solar dimming to that of aerosol loading changes. Although some studies have suggested that brown 

clouds that are formed due to aerosols over the Indian Ocean and Asia (Ramanathan et al., 2007) might be transported to the 

TP by the summer monsoon, Yang et al. (2012) and (2014) contended that the main drivers are deep convective clouds and 40 

atmospheric water vapor, and that aerosol radiative forcing is too small to result in the significantly decreased DSR over the 

TP. These studies clearly show contradictory conclusions regarding the proper attribution of the TP dimming; therefore, the 

roles of aerosols and clouds in TP dimming still need to be determined. Moreover, some of these studies were mainly based 

on ground measurements at a limited number of sites that cannot represent the entire TP.  Furthermore, the surface observed 

sunshine duration data that were used for estimating DSR (Wang, 2014;Yang et al., 2006) were not available over the TP until 45 

the 1960s. Regardless, the statistical model can hardly capture the low aerosols’ influences on surface solar radiation by 

sunshine duration especially at complex terrains in TP. Thus, considering that remote sensing has been developed for several 

decades, it provides a valuable opportunity to employ satellite observations to monitor spatial temporal variations at regional 

scales. 

The radiative effect of anthropogenic aerosols has not yet been well quantified by observations over the TP, and this 50 

information is necessary for understanding the role of anthropogenic aerosols in climate warming, and revealing impacts of 

human activities in remote areas. Calculating the radiative effect is vital for understanding the impact of aerosols on local and 

continental climate warming. Model simulations (Ji et al., 2015) have shown that carbonaceous aerosols have positive radiative 

forcing effects on climate warming over the TP, leading to a 0.1–0.5 ℃ warming in the monsoon season, while some studies 

have demonstrated that anthropogenic aerosols (AAs) have a cooling effect on local climate warming (Smith et al., 55 

2016;Sundström et al., 2015). Li et al. (2015) calculated the aerosol impact on climate warming in different seasons over arid-

semiarid and humid-semiarid areas, and across China, and showed that China undergoes a cooling rate of −0.86 to −0.76 °C 

per century due to increased aerosols. However, these conclusions were based on model simulations (Liao et al., 2015) and 

have not yet been combined with observations.  

In this study, calibrated by the Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled (CERES EBAF) 60 

Edition 4.0 surface downward radiation products (Kato et al., 2018), long-term (from 1850–2015) surface DSR and DLR 

datasets over the TP were developed by merging 18 Coupled Model Intercomparison Project Phase 5 (CMIP5) models (Taylor 

et al., 2012). Site validation and comparison were processed to the calibrated data, the CMIP5 model outputs, and other long-
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term radiation products. The spatiotemporal variations in the generated surface radiation datasets and four long-term air 

temperature datasets were initially analyzed, and the TP solar dimming was attributed by using multiple types of satellite and 65 

reanalysis data, which were confirmed by climate model simulations. We characterized the seasonal difference of the TP solar 

dimming and further quantified the depressing effect on local climate warming since 1850 using two methods driven by 

satellite observations and model simulations.  

2 Data and Methodology  

2.1 Data 70 

2.1.1 Coupled Model Intercomparison Project Phase 5 (CMIP5) data 

The CMIP5 (Taylor et al., 2012) datasets with spatial resolutions less than 2° were chosen in the paper, and 18 monthly 

modeled datasets (summarized in Table 1) from the Historical experiment were included, which cover 1850 to 2005; the 

following years (2006–2015) of records are from the Representative Concentration Pathway (RCP) 8.5 experiment. We used 

the first ensemble (r1i1p1) only of each experiment to reduce the calibration complexity of surface downward radiation. 75 

Aerosol optical depth, precipitation, and wind speed from the Historical and RCP8.5 experiments of the models were used to 

analyze differences in dimming magnitudes at seasonal scales. Surface temperature, wind speed, and relative humidity were 

employed for calculating the aerosol depressing effect due to the long-term coverage. The corresponding HistoricalMisc 

experiment (i.e., an experiment that combined different specific forcings) data were also utilized in the attribution analysis, 

including downward shortwave radiation driven by AA and noAA (all forcings except AA). The PiControl experiment 80 

provided the natural internal variation utilized in the optimal fingerprinting method (Methodology 2.2.2). The attribution and 

depressing effect calculation included all the available ensembles of each model. All datasets were resampled into 1 Lat/Lon 

degree using a bilinear interpolation method. CMIP5 datasets are available from the Intergovernmental Panel on Climate 

Change (IPCC) data distribution center at http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html (all data 

were accessed on 15 December 2018). 85 

2.1.2 Remote sensing and assimilation products 

2.1.2.1 Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled (CERES EBAF) radiation products 

The CERES EBAF-surface Edition 4.0 monthly downward shortwave and longwave radiation products (Kato et al., 2018) 

were employed as a benchmark for calibrating simulated CMIP5 surface radiation by a non-negative least square (NNLS) 

regression approach (Bro and De Jong, 1997) (Methodology 2.2.1). Comparing with former solar radiation products, CERES 90 

EBAF has been comprehensively assessed and considered as the most advanced surface radiation satellite product. It is usually 

used as a reference for model and reanalysis validation (Zhang et al., 2015;Zhang et al., 2016). Besides, former studies have 

already used the CERES EBAF DSR product for applications and analysis (Feng and Wang, 2018;Ma et al., 2015). This new 
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version contains surface fluxes consistent with the top-of-atmosphere (TOA) fluxes provided from the CERES Energy 

Balanced and Filled Top of Atmosphere (EBAF-TOA) data product. They also used improved cloud properties that are 95 

corrected by cloud profiling radar, and consistent input sources are employed, such as temperature, humidity, and aerosol data, 

in order to solve the spurious anomaly problem (Jia et al., 2018;Jia et al., 2016). All the advantages help to quantify the absolute 

magnitude and temporal trend of surface DSR (Feng and Wang, 2019). The CERES EBAF-TOA Edition 4.0 monthly TOA 

albedo product (Loeb et al., 2018) was used for computing the temporal variation in the TOA albedo over the Tibetan Plateau 

(TP) in the dimming attribution analysis. The TOA solar radiation product was used as a monthly climatology and was 100 

combined with the calibrated surface DSR data to compute the atmospheric shortwave transmissivity in the aerosol depressing 

effect quantification. Meta information on the included products is summarized in Table 2. All products were pre-processed 

into 1 degree at a monthly scale for further analysis to unify the spatial temporal resolution. 

2.1.2.2 Aerosol, cloud, and dust products 

Multiple aerosol, cloud, and dust products were employed for the attribution of solar dimming. The averages of the Moderate 105 

Resolution Imaging Spectroradiometer (MODIS) MOD/MYD08 Collection 6.1 aerosol optical depth (AOD) 550 products that 

combine the Dark Target and Deep Blue algorithms were used for detecting aerosol variations over the TP. The MOD/MYD08 

C6.1 cloud fraction was also included in the attribution analysis. In MODIS C6.1, the brightness temperature biases and 

trending were substantially reduced compared to C6, which affected the cloud retrieval and also caused large uncertainty with 

respect to the AOD over elevated areas (Sogacheva et al., 2018). Additionally, the MODIS AOD coverage increased in C6.1. 110 

The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) AOD550 product (Sayer et al., 2012) utilized 12 candidate aerosol 

models for generating the aerosol lookup tables (Hsu et al., 2012), and AODs at different wavelengths have been retrieved 

over land with the use of the Deep Blue algorithm (Pozzer et al., 2015). The SeaWiFS AOD550 product was used for 

calculating the aerosol temporal variation over the TP. 

The aerosol index data were inversed from Total Ozone Mapping Spectrometer (TOMS)-Nimbus 7, TOMS-Probe, and Ozone 115 

Monitoring Instrument (OMI) at different time periods (Ahmad et al., 2006). We employed TOMS N7 records from 1980 to 

1992, TOMS Probe from 1997 to 2004, and OMI from 2005 to 2015. By using the 340- and 380-nm wavelength channels 

(which have negligible dependence on ozone absorption), the aerosol index was defined based on backscattered radiance 

measured by TOMS and OMI and the radiance calculated from a radiative transfer model for a pure Rayleigh condition (Hsu 

et al., 1999). This approach measures the relative amount of aerosols and has a comparable relationship with AOD (McPeters 120 

et al., 1998). 

Particulate matter (PM) 2.5, characterizing very small particles that have a diameter of < 2.5 µm and are produced by human 

activities, is a common index of air pollution (Wang et al., 2015). We employed the PM2.5 satellite products to link the aerosol 

loading with air pollution. The PM2.5 satellite product is calculated from MODIS, Multi-angle Imaging SpectroRadiometer 
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(MISR), and SeaWiFS AOD products based on a relationship generated from a chemical transport model (Van Donkelaar et 125 

al., 2016), and its uncertainty is determined by ground measurements.  

MERRA2 aerosol products are the new generation reanalysis data that have assimilated MODIS and MISR land aerosol 

products since 2000 (Randles et al., 2017). Dust column mass density from MERRA2 was included for comparison of the 

temporal variation with PM2.5 data to determine whether the AOD increase was due to air pollution. 

International Satellite Cloud Climatology Project (ISCCP) and Pathfinder Atmospheres–Extended (PATMOS-X) provide 130 

long-term cloud fraction products, however, the trend is spurious (Evan et al., 2007). This is because of the satellite zenith 

angle, equatorial crossing time, and because of the sensor calibration lack long-term stability. Corrected cloud fraction datasets 

(Norris and Evan, 2015), which were used for solar dimming attribution in this paper, employed an empirical method for 

removing artifacts from the ISCCP and PATMOS-X, and the corrected cloud products have been used for providing evidence 

for climate change in satellite cloud records in other studies (Norris et al., 2016).  135 

Diagnosing Earth’s Energy Pathways in the Climate system (DEEP-C) TOA albedo was calculated by the DEEP-C monthly 

TOA absorbed solar radiation (ASR) (Allan et al., 2014) and monthly TOA incoming solar radiation climatology from the 

CERES EBAF-TOA Ed4.0 product. The DEEP-C TOA albedo was used for detecting the radiative influence of increasing 

aerosols in the dimming attribution. Central to the DEEP-C TOA radiation reconstruction are monthly observations of the 

TOA radiation from the CERES scanning instruments after 2000 and Earth Radiation Budget Satellite (ERBS) wide field of 140 

view (WFOV) nonscanning instrument from 1985 to 1999. A strategy was required to homogenize the satellite datasets (Allan 

et al., 2014), and the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) has provided 

atmospheric information since 1979, also using a subset of nine climate models to represent direct and indirect aerosol radiative 

forcings. 

2.1.2.3 Global LAnd Surface Satellite (GLASS) surface albedo product 145 

The GLASS surface albedo product provides ancillary data for calculating the aerosol depressing effect. The GLASS albedo 

product from MODIS observations is based on two direct albedo estimation algorithms (He et al., 2014); one designed for 

surface reflectance and one for TOA reflectance (Qu et al., 2014). The statistics-based temporal filtering fusion algorithm is 

used to integrate these two albedo products (Liu et al., 2013a). The GLASS albedo product has been assessed by ground 

measurements and the MODIS albedo product and has comparable accuracy (Liu et al., 2013b). 150 

2.1.2.4 Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Monthly Emissivity Dataset 

(ASTER_GED) 

The ASTER surface emissivity data were also used for calculating the aerosol depressing effect. The ASTER_GED data 

products are generated using the ASTER Temperature Emissivity Separation algorithm (Gillespie et al., 1998) atmospheric 

correction method. This algorithm uses MODIS Atmospheric Profiles product MOD07 and the MODTRAN 5.2 radiative 155 
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transfer model, snow cover data from the standard monthly MODIS/Terra snow cover monthly global 0.05° product 

MOD10CM, and vegetation information from the MODIS monthly gridded NDVI product MOD13C2 (NASA JPL. ASTER 

Global Emissivity Dataset, 2016). 

2.1.3 Ground measurements 

Utilized for surface radiation validation, ground radiation measurement sites over the TP are mainly from two ground networks 160 

(Global Energy and Water Exchanges [GEWEX] Asian Monsoon Experiment [GAME] (Yasunari, 1994) and Coordinated 

Energy and Water Cycle Observation Project (CEOP) Asia-Australia Monsoon Project [CAMP] (Leese, 2001)) that cover 

1995–2005. The China Meteorology Administration (CMA) network is not included due to a systematic error in the 1990s 

(Zhang et al., 2015). The GAME was proposed as an international project under the Global Energy and Water Exchanges 

(GEWEX) program to understand the processes associated with the energy and hydrological cycle of the Asian monsoon 165 

system, and its variability. The data are available at http://www.hyarc.nagoya-u.ac.jp/game/phase-1/game-aan.html. The 

CAMP, which followed the GAME, focused on water and energy fluxes and reservoirs over specific land areas and monsoonal 

circulations. These data are available at http://metadata.diasjp.net/dmm/doc/CEOP_CAMP_Tibet-DIAS-en.html. We ignored 

the spatial representative difference between site observations and downward radiation datasets in line with former studies 

(Wang and Dickinson, 2013;Zhang et al., 2015). 170 

We also collected 5 sites from Global Energy Balance Archive (GEBA) over the TP to detect long-term temporal variation of 

surface DSR from 1960 to 2000. This ground measurement network is developed and maintained at ETH Zurich and the 

random error of DSR is 2% for annual means (Zhang et al., 2015). Even the site amount is not large enough to represent the 

whole TP, the sampled surface measurements can reflect the ground truth and support our conclusion. 22 sites that observed 

downward radiation in the TP were included in this study, and their distribution is shown in Figure 1. 175 

2.1.4 Surface air temperature datasets 

Four long-term surface air temperature datasets were used for characterizing the temporal variation over the TP and 

corresponding aerosol depressing effect; the Berkley Earth Surface Temperature land surface air temperature dataset (BEST-

LAND) (Rohde et al., 2013), Climate Research Unit Temperature Data Set version 4 (CRU-TEM4v) (Jones et al., 2012), 

National Aeronautics and Space Administration Goddard Institute for Space Studies (NASA-GISS) (Hansen et al., 2010), and 180 

National Oceanic and Atmospheric Administration National Center for Environmental Information (NOAA-NCEI) (Smith et 

al., 2008). These data were interpolated and homogenized from ground observation networks.Rao et al. (2018) provided data 

assessment of the four air temperature datasets, and a brief summary of the datasets is provided in Supplementary Table S1. 
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2.2 Methodology 

2.2.1 Calibration method 185 

Long-term series surface downward radiation data are urgently needed for characterizing the spatial-temporal variation of 

surface radiation budget over the TP, and they are also essential for the solar dimming attribution and calculating the aerosol 

radiative forcing and depressing effect on the increasing air temperature. To generate a long-term series surface downward 

radiation data record with high accuracy, a non-negative least squares (NNLS) regression (Bro and De Jong, 1997) approach 

was employed for merging multiple CMIP5 model records. The non-negative multiple linear models are utilized because the 190 

non-negativity constraint of NNLS only applies a non-subtractive combination of all components (Eq. [1]).  

𝑦 = ∑ 𝑎𝑖𝑥𝑖 , (𝑎𝑖 ≥ 0),                                                                              (1) 

where y is the calibrated radiation data, ai is the coefficient of each CMIP5 model simulation xi.  

The calibration was done pixel by pixel to avoid the influence of geolocation and elevation. Given that radiative fluxes are 

always positive, a key assumption here is that the CERES radiative flux can be expressed as a non-negative linear combination 195 

of each model output at each grid. One CMIP5 model may hardly present the variations in the actual radiative fluxes but should 

not have any negative contributions. To avoid the influence from the seasonal cycle on the expression of the inter-annual 

variation of the radiative flux, the fusion models were generated monthly. The CERES satellite products aid NNLS to provide 

the best-weighted combination for each CMIP5 model, producing improved validation results compared to those produced by 

only using the mean of all model outputs. Mean Bias Error (MBE), Root-Mean-Square-Error (RMSE), and R2 were utilized 200 

for quantifying site validation and comparing with the mean CMIP5 data and multiple satellite and reanalysis product fused 

radiation data from Shi and Liang (2013). The temporal variation and comparison among products are calculated by using 

latitude-weighted average over the TP. Detailed description of assessment methods are introduced in Jia et al. (2018). 

2.2.2 Attribution analysis 

Optimal fingerprinting is a common method in the attribution analysis of model data. It is based on a linear relationship, and, 205 

if the scaling factor is > 0 at a certain significance level, the variable has a positive contribution toward the responding variable. 

The optimal fingerprinting method has been widely applied for climate change detection and attribution (Sun et al., 2014;Zhou 

et al., 2018). It is assumed that the response variable has a linear relationship with different driving variables (Eq. [2]): 

𝑦 = ∑ 𝛽𝑖𝑥𝑖 + 𝜀,                                                                                     (2) 

where 𝜀 is the modeled natural internal variation obtained from the CMIP5 piControl Experiment, and 𝛽𝑖 is the scaling factor 210 

of each driving variable xi. If the scaling factor is > 0 at a certain significance level, the variable has a positive contribution 

toward the responding variable. 

https://doi.org/10.5194/acp-2019-553
Preprint. Discussion started: 10 September 2019
c© Author(s) 2019. CC BY 4.0 License.



8 

 

2.2.3 Depressing effect 

For quantitating the depressing effect of aerosols on surface warming over the TP, the shortwave and longwave radiative 

effects must be separated. To calculate the relationship between the surface air temperature increase and surface radiation 215 

components, it is necessary to decompose the energy sources into separate mechanisms. The land surface energy balance is 

given by Eq. (3): 

𝑆𝑛 + 𝐿𝑛 = 𝜆𝐸 + 𝐻 + 𝐺,                                      (3) 

where 𝑆𝑛  is the net shortwave radiation, 𝐿𝑛  is the net longwave radiation, 𝜆  is the latent heat of vaporization, 𝐸  is 

evapotranspiration, H is the sensible heat flux, and G is the ground heat flux that was neglected for the long time period. They 220 

can be decomposed in Eq. (4) as: 

𝑆𝜏(1 − 𝛼) + 𝜀𝑠𝜎(𝜀𝑎𝑇𝑎
4 − 𝑇𝑠

4) = 𝜆𝐸 + 𝜌𝐶𝑑 (𝑇𝑠 − 𝑇𝑎) 𝑟𝑎⁄ ,                                            (4) 

where S is the TOA solar radiation, τ is the atmospheric shortwave transmissivity (ratio between the calibrated surface DSR 

and S), 𝛼 is the surface albedo, 𝜀𝑠 is the surface emissivity, 𝑇𝑎 is the air temperature, 𝑇𝑠 is the surface skin temperature, and 𝑟𝑎 

is the aerodynamic resistance at 2 m height. 𝜎 is equal to 5.67 × 10−8 W m−2 K−4, ρ is 1.21 kg m−3, and Cd is 1013 J kg−1 K−1. 225 

Considering that the ∆𝑇𝑎 is mainly dominated by the change in 𝑇𝑠 interacting with 𝑇𝑎 through radiative and thermal processes 

and the change in atmospheric circulation ( ∆𝑇𝑎
𝑐𝑖𝑟 , for example, advection of cold and warm air masses), a first-order 

approximation of the direct near-surface temperature response to each component (Zeng et al., 2017) is derived from Eq. (5) 

and Eq. (6): 

∆𝑇𝑎 = 1 𝑓⁄ (𝑆(1 − α)∆τ − 𝑆τ∆α − 𝜆𝐸 + 𝜀𝑠𝜎𝑇𝑎
4∆𝜀𝑎 230 

+ 𝜌𝐶𝑑((𝑇𝑠  −  𝑇𝑎)/𝑟𝑎
2)∆𝑟𝑎) + ∆𝑇𝑎

𝑐𝑖𝑟 ,                     (5) 

where the f is: 

𝑓 = 𝜌𝐶𝑑 𝑟𝑎⁄ + 4𝜀𝑠𝜎𝜀𝑎𝑇𝑎
3,                      (6) 

and f--1 represents the land surface air temperature sensitivity to 1 W m-2 radiative forcing at the land surface. We assumed that 

S, λ, ρ, Cd, σ, and εs are independent of Ts. We employed the 𝛼, 𝜀𝑠, and S climatologies and the mean values of the satellite 235 

products for several years. Therefore, the Ta response to the surface DSR change is calculated by the first term (related to ∆τ) 

in the formula. Based on Eq. (7): 

DLR = 𝜎𝜀𝑎𝑇𝑎
4,                                               (7) 

from Eq. (8) we can also obtain the relationship between ∆𝑇𝑎 and ∆DLR: 

∆𝑇𝑎
𝐷𝐿𝑅 = ∆DLR (4𝜎𝜀𝑎𝑇𝑎

3)⁄ .                                      (8) 240 
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We then added the depressing effect from ∆DSR and ∆DLR to get the aerosol depressing effect on the TP climate warming. 

Although the first-order approximation method included many remote sensing products and had more reliable input than the 

model calculation, it ignored the heat exchange with surrounding areas. Hence, we also calculated the depressing effect of AAs 

by employing the CMIP5 air temperature data from multiple noAA simulations, which computed the influence of the 

interaction with other regions. We then compared the two results (Supplementary Fig. S5) and calculated the mean value as 245 

the final depressing effect result. 

3 Results and discussion 

3.1 Validation and comparison of the calibrated downward radiation data 

From January 1995 to December 2005, in situ observations were collected at 17 sites for monthly validation of DSR and DLR. 

The scatter diagrams and validation results of the CERES calibrated data, mean CMIP5, and reanalysis and satellite fused 250 

product from Shi and Liang (2013) at two networks are shown in Figure 2.  

Figure 2 indicates that the CERES calibrated datasets have the lowest bias and RMSE for DSR and DLR validation at GAME 

and CAMP network, and the R2 at CAMP network has the highest. The bias of the calibrated DSR at CAMP (GAME) is -0.27 

(-3.68) Wm-2 and the RMSE is 20.59 (25.27) Wm-2, whereas the bias of calibrated DLR at CAMP (GAME) is 0.63 (-4.31) 

Wm-2 and the RMSE is 11.90 (21.08) Wm-2. We can conclude that by using the NNLS method, the CERES calibration 255 

decreased the data bias and RMSE and improved the R2, providing the best-weighted combination for each CMIP5 model and 

producing better validation results than those produced by only using the mean of all model outputs and data from former 

studies. The minor validation difference between the two networks is the system bias mainly caused by disparate instruments. 

We ignored the spatial mismatch between site observations and downward radiation datasets in line with former studies (Wang 

and Dickinson, 2013;Zhang et al., 2015). Moreover, the annual anomaly temporal variation was compared with the data from 260 

Shi and Liang (2013) and is shown in Figure 3. 

The annual temporal variation illustrates that two products have a similar temporal trend of DSR and DLR at a decadal scale 

over the TP, and that the CERES calibrated data have longer time spans. The DSR output shown by Shi and Liang (2013) has 

a slightly larger decreasing trend, which may be because GEWEX and ISCCP surface radiation products have high weights in 

the model, and the related spurious cloud trend causes an overestimated dimming trend (Evan et al., 2007). Feng and Wang 265 

(2018) utilized a cumulative probability density function-based method to fuse CERES and longer time reanalysis surface DSR 

data, however in this study they only calibrated individual reanalysis whereas in the present study we merged multiple CMIP5 

data that cover longer time span and include more climate general model simulations. Besides, most reanalysis did not include 

aerosol variation information, which is important to determine the DSR decadal variation and characterize the aerosol radiative 

forcing. 270 
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3.2 Characterizing long-term variations in air temperature and surface downward radiation over the Tibetan Plateau 

Air temperatures slowly increased from 1850 to 2015. The DLR increased gradually prior to 1970 but rapidly during the 

following period. The DSR remained stable and decreased rapidly afterward, revealing an opposite trend to the DLR and air 

temperature (Figure 4a). In total, DSR decreased by 4.1 W m-2 from 1850 to 2015 with a gradient of -0.53 W m-2 per decade 

after 1950, and DLR increased from 0.21 W m-2 per decade to 1.52 W m-2 per decade after 1970. Air temperature has increased 275 

by 1.39 K since 1850. Prior to 1950, increased air temperature was mainly triggered by increased DLR. Air temperature slightly 

decreased from 1950 to 1970, because both DSR and DLR decreased during that period. Although DLR increased rapidly after 

1970, the air temperature gradient has not considerably changed, mainly due to solar dimming compressing the greenhouse 

effect. The solar dimming over TP is also detected by long-term ground DSR observations from 5 GEBA sites since 1960 

(Supplementary Fig. S1) when the measurements were set up. Because heat exchange with other regions in the summer and 280 

winter are mostly counteracted, we ignored the interaction at decadal scales and suggested that air temperature is mainly driven 

by local radiation components. All four surface air temperature datasets show similar temporal trends, especially on the decadal 

scale.  

The long-term spatiotemporal variations in downward surface radiation over the TP and surrounding regions are illustrated in 

Figure 4b and 4c. Figure 4b demonstrates that the DSR decrease rate in the central region is about -0.08 W m-2 per decade, 285 

much lower than in surrounding areas. The fastest decrease in DSR appears in the southeastern TP at a gradient of about -0.37 

W m-2 per decade since 1850. Northern India, South Asia, and southern China show a substantially dimming trend with a 

gradient of about -0.65 W m-2 per decade. The DLR has increased, especially in the central and northern TP (Figure 4c). 

However, the rate of increase is much slower in the southern and southeastern TP, with a gradient of approximately 0.21 W 

m-2 per decade.  290 

3.3 Attribution to the Tibetan Plateau solar dimming 

3.3.1 Analysis of satellite products and reanalysis 

Both observed satellite products and reanalysis datasets provide evidence that AAs are the major driver of the significant 

decrease in the DSR over the TP. The aerosol optical depth (AOD) products from the SeaWiFS (Sayer et al., 2012) and MODIS 

08 C6.1 (Levy et al., 2007) satellite products demonstrated similar annual anomalies and increasing trends after 1998 (Figure 295 

5a). The aerosol index, which measures the relative amount of aerosols and has a comparable relationship with AOD (McPeters 

et al., 1998), shows that the number of aerosols has been escalating over the past 30 years (Figure 5a). The AOD has increased 

0.0098 over the TP based on the trend, causing approximately 1.97 Wm-2 of dimming since 1998, according to multiple CMIP5 

AA simulations over the TP and near linear relationship between AOD and radiative forcing at this magnitude level (Yang et 

al., 2012). This is larger than the calibrated DSR dimming result of 1.10 Wm-2, and some of the dimming caused by the aerosol 300 

increase is offset by decreased cloud cover (Figure 5c).  
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The PM2.5 satellite product (Van Donkelaar et al., 2015) also showed an increasing trend after 2000 (Figure 5b), while 

MERRA2 dust loading (Randles et al., 2017), which has been assimilated from MODIS and MISR land aerosol products since 

2000, has been decreasing. Particulate matter (PM) 2.5, characterizing very small particles that have a diameter of less than 

2.5 micrometers and are produced by human activities, is a common index for measuring air pollution (Wang et al., 2015). 305 

The variation in PM2.5 and dust indicates that increased aerosols are mainly from air pollution rather than from natural causes. 

Based on the corrected cloud fraction datasets (Norris and Evan, 2015) from the ISCCP and Pathfinder Atmospheres–Extended 

(PATMOS-X) and the average cloud fraction from MOD/MYD08 C6.1, the results demonstrate that the cloud fraction over 

the TP has been decreasing since 1980 (Figure 5c), indicating a trend opposite to the TP solar dimming. The overall temporal 

variation of TOA albedo from DEEP-C (Allan et al., 2014) and CERES presents an increasing trend with a magnitude of ~0.01 310 

over the TP from 1985 to 2015 (Figure 5d). The TOA albedo is an important component of Earth’s energy budget and is mainly 

influenced by clouds and aerosols. It can be inferred that aerosols over the TP were recently increasing, reflecting more solar 

radiation into space and causing the TOA albedo increase and solar dimming at the surface.  

Yang et al. (2012) argued that aerosols had limited radiative forcing compared with the DSR decrease over the TP, however, 

ground observations used in these studies were only from one AErosol RObotic NETwork (AERONET) site at the center of the 315 

TP (30.773 °N, 90.962 °E). Furthermore, the site was less impacted by surrounding regions and so cannot represent the entire 

TP, especially the edge regions that are more easily contaminated by air pollution from surrounding areas.  

Yang et al. (2012) and (2014) also suggested that the increasing trend in the deep convective clouds were attributed to the TP 

dimming, however, our analysis has different conclusion. We used the cloud top pressure and cloud optical depth released by 

MODIS at different atmospheric levels to detect which pixels are deep convective clouds. The threshold is based on the 320 

definition of ISCCP (Rossow and Schiffer, 1999). Then, we calculated the ratio of deep convective clouds in all pixels over 

the TP and obtained the temporal variation and spatial distribution. Moreover, regardless of cloud type, the cloud mainly affects 

the DSR by cloud optical depth, so we reviewed the temporal variation of the total cloud optical depth. The analysis illustrates 

that even though the ratio of deep convective clouds is increasing (Supplementary Fig. S2a), deep convective clouds only 

appeared in the south and west of the TP (Supplementary Fig. S2b). Additionally, the overall cloud optical depth has been 325 

decreasing over the past 15 years (Supplementary Fig. S2a). Therefore, deep convective clouds have little influence over the 

entire TP.  

We also assessed the temporal variation of the atmospheric water vapor and total column water vapor (Supplementary Fig. 

S3), suggested as an important driving factor of TP dimming by Yang et al. (2012), and the temporal variation illustrated that 

water vapor has been decreasing since 1998 over the TP. However, solar dimming did not show a similar turning point around 330 

1998, and rather the overall increasing trend of water vapor since 1980 was limited. Therefore, the influence of water vapor 

variations can be ignored. The Yang et al. (2012) study also identified this phenomenon by using ECMWF Re-Analysis (ERA)-

40, however, this research ceased in 2005 and did not show an overall turning trend.  
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Although satellite products analysis only began in 1980, observational records have existed for more than 30 years, and the 

spatial extent of the satellite data over the entire TP supports our conclusions. Figure 4b shows that the regions of China, India, 335 

and South Asia surrounding the TP have large populations and serious air pollution. Balloon-borne observations (Tobo et al., 

2007) and remote sensing products (Vernier et al., 2015) have shown that fine aerosols can be transported over the TP region 

and enter the Asian tropopause aerosol layer by deep convection via two key pathways over heavily polluted regions (Lau et 

al., 2018). Because of the decreasing dust amount trend the TP, we infer that the increased aerosols are mainly due to air 

pollution around the TP. Although TP is still one of the cleanest areas in the world and the aerosol climatology is low, the 340 

dimming can be demonstrated by the variation of DSR decadal anomalies. It is necessary to point out that direct radiative 

effects (scattering and absorption effect) play a dominant role in the interactions between aerosols and the atmosphere (Li et 

al., 2017) when the aerosol loading is low. Thus TP is easily affected by the aerosols increase under a clean atmosphere 

condition. 

 345 

3.3.2 Analysis of model simulations 

The long-term model simulation results also show that AAs are the main driving factor of solar dimming. Based on the multiple 

CMIP5 HistoricalMisc (an experiment combining different specific forcings) model ensembles, we found that the calibrated 

DSR and the DSR driven by AAs and noAA had stable variations before 1950. The calibrated DSR obviously decreased after 

1950 (Figure 6a). Only the AA-driven DSR can capture the dimming trend since 1950, therefore we can conclude that AAs 350 

are the main signal at the decadal scale, while the factors in the noAA-driven model process (such as cloud cover and water 

vapor) can be ignored. We also detected the AA and noAA driving factors using the optimal fingerprint method, and observed 

that AAs had a positive contribution, especially after 1970 (Figure 6b). The impact factor of noAA is negative, and the satellite 

cloud products reveal the same conclusion after 1980 (Figure 5c), i.e., that the cloud fraction has been decreasing and has had 

a negative contribution to the TP solar dimming. Therefore, the attribution results from model simulations match the evidence 355 

from the satellite data very well. 

General climate models have coarser spatial resolution, causing the elevation in the model is lower than the reality and this 

may cause higher AOD estimation over highland area. However, when we compared the multiple CMIP5 AOD with site 

measurements, it demonstrates that the overall magnitude and monthly variation of CMIP5 AOD match the AERONET 

observations (Supplementary Fig. S4), even though it is slightly higher than the AOD in the non-monsoon season. Therefore, 360 

it is reasonable to include the CMIP5 AA and noAA simulations in the attribution work. Results of multiple models have 

uncertainties, which are illustrated as colored shadow, but the overall variation is of significance tested in temporal analysis 

and optimal fingerprint method.  
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3.4 Depressing effects of aerosols on climate warming in summer 

By comparing the first 30 years of climatology (1850–1880) and the last 30 years of climatology (1985–2015), we found that 365 

the TP solar dimming is stronger in summer (from June to August), at the same time that the increasing magnitude of the 

surface air temperature is the smallest (Figure 7a). Multiple CMIP5 model ensembles show that changes in precipitation and 

wind speed over the TP during different seasons were related to the AOD increase. Precipitation in summer had the greatest 

decrease relative to other seasons, while AOD increased more in the summer (Figure 7b). Furthermore, the wind speed clearly 

decreased in summer compared to other seasons (Figure 7c). TP is a strong heat source in summer, forming a sensible heat–370 

derived air-pump that dominates the atmospheric circulation (Wu et al., 2015) and conveys aerosols into the lower stratosphere 

(Lau et al., 2018). However, increased precipitation will reduce the aerosol duration lifetime considerably (Liao et al., 2015), 

and wind speed also controls aerosol diffusion. Hence it is evident that less precipitation and lower wind speeds in summer 

resulted in greater aerosol stability.  

Although aerosols have considerably influenced summer downward radiation over the TP, their radiative effect on climate 375 

warming has not been quantitatively calculated. By employing the multiple noAA model simulations, the temporal variation 

of aerosol radiative forcing over the TP are illustrated in the Supplementary Fig. S5. It demonstrates that the aerosol radiative 

forcing has been increasing about 8.08 Wm-2 by calculating the difference between the first 30 years of climatology (1850–

1880) and the last 30 years of climatology (1985–2015).  

Quantification of the depressing effect from AAs is essential for evaluating the impact of air pollution on local and continental 380 

climate warming and is also vital for improving our understanding of the role of human activities in remote areas. The 

depressing effects of aerosols on air temperature in summer (Figure 8) were calculated using two methods: one is using first-

order approximations of the direct near-surface air temperature response to each radiative and thermodynamic component and 

is based on remote sensing and modeling data; the other is calculated by using multiple noAA simulations. The two methods 

had similar depressing magnitudes (Supplementary Fig. S6), and the mean is shown in Figure 8. Surface air temperature 385 

increased almost 0.86 K (Figure 7a) over the TP in summer when comparing the first 30 years and the last 30 years, whereas 

the increasing magnitude of the surface air temperature that has no aerosol impact (the red line in Figure 8) is approximately 

1.64 ± 0.28 K, which indicates that approximately 0.80 ± 0.28 K (48.6 ± 17.3%) of the local climate warming over the TP has 

been depressed by aerosols since 1850 in summer.  

The first-order approximation method utilized many remote sensing products as climatology and forcing input, which are more 390 

reliable than the model simulations, but it ignored the heat exchange with surrounding areas. Hence, we also calculated the 

depressing effect of AAs by employing the CMIP5 air temperature data from multiple noAA simulations, which computed the 

influence of the interaction with other regions. Then we calculated the mean value as the final depressing effect result for 

including the advantages of these two methods. 
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4 Conclusion 395 

The TP plays a vital role in regional and global climate change due to its location and orography. Former studies have proven 

that this region undergoes significant climate change, however, the causes and impacts of solar dimming are still under debate. 

Calibrated by the CERES EBAF surface downward radiation products and using NNLS method, long-term (from 1850–2015) 

surface DSR and DLR datasets over the TP were developed by merging 18 CMIP5 models. Compared with the mean of 

multiple CMIP5 data and fusion data from former studies, the CERES calibrated data had the lowest bias and RMSE for DSR 400 

and DLR validation at GAME and CAMP network, and the highest R2 at CAMP network. The calibrated DSR and DLR have 

similar temporal trends over the TP at a decadal scale compared to the fusion of multiple reanalysis and satellite products.  

Based on calibrated surface downward radiation data and four sets of air temperature data, we characterized the spatiotemporal 

variation in surface radiation along with temperature. The TP is currently experiencing substantial climate warming and solar 

dimming at the surface. In total, DSR decreased by 4.1 W m-2 from 1850 to 2015 with a gradient of -0.53 W m-2 per decade 405 

after 1950, and DLR increased from 0.21 W m-2 per decade to 1.52 W m-2 per decade after 1970. Air temperature has increased 

by 1.39 K since 1850. The dimming is also detected from long-term observing GEBA sites. Spatial and temporal analyses 

illustrated that the DSR decrease rate in the central region was approximately -0.08 W m-2 per decade, much lower than in 

surrounding areas. The fastest decrease in DSR appeared in the southeastern TP at a gradient of about -0.37 W m-2 per decade 

since 1850, and DLR has increased, especially in the central and northern TP. However, the rate of increase is much slower in 410 

the southern and southeastern TP, with gradients of approximately 0.21 W m-2 per decade.  

By employing satellite and reanalysis products of aerosols, PM2.5, dust, cloud fractions, and TOA albedo, we determined that 

anthropogenic aerosols were the main cause of the solar dimming over the TP. The aerosol optical depth and the aerosol index 

has increased since the 1980s over the TP and increasing PM2.5 and decreasing dust linked the increasing aerosol to air 

pollution. We also proved from satellite products and reanalysis data that deep convective cloud and atmospheric water vapor 415 

are not the main drivers, due to limited distribution and magnitude since the 1980s. Furthermore, the overall cloud optical 

depth is decreasing. Additional evidence from multiple CMIP5 HistoricalMisc experiment ensembles also supports this 

conclusion that anthropogenic aerosols were the main cause of solar dimming over the TP.  

Solar dimming over the TP is stronger in summer when the increasing magnitude of the surface air temperature is the smallest. 

Decreased precipitation and wind speeds triggered increased aerosol stability. Comparing the averages of the first 30 years 420 

(1850–1880) and last 30 years (1985–2015), the surface air temperature increased by approximately 0.86 K over the TP in the 

summer. Relying on calculated aerosol radiative forcings, the depressing effect of aerosol was calculated using two methods 

and both of which showed similar depressing magnitude. The increasing magnitude of the surface air temperature (with no 

aerosol impact) was approximately 1.58 K, which means approximately 0.80 ± 0.28 K (48.6 ± 17.3%) of the local climate 

warming over the TP has been depressed by aerosols since 1850 in summer. The study reveals the impacts of human activities 425 

on regional warming, even in remote areas, and highlights the need for additional studies to be conducted to quantify the 
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influence of air pollution on regional climate change over the TP. Therefore, we will focus on the influences of air pollution 

on local precipitation over the TP and surrounding areas in the next work. 
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Table 1: Summary of the Coupled Model Intercomparison Project Phase 5 (CMIP5) surface downward radiation simulations used 

in this study. 

Name Spatial Resolution Reference 

Longitude Latitude 

CMCC-CM 0.75° 0.75° Scoccimarro et al. (2011) 

CESM1-CAM5 1.25° 0.94° Meehl et al. (2013) 

CESM1-BGC 1.25° 0.94° Long et al. (2013) 

CCSM4 1.25° 0.94° Gent et al. (2011) 

MRI-CGCM3 1.13° 1.13° Yukimoto et al. (2012) 

BCC-CSM1.1m 1.13° 1.13° Wu et al. (2010) 

MIROC5 1.41° 1.41° Mochizuki et al. (2012) 

CNRM-CM5 1.41° 1.41° Voldoire et al. (2013) 

ACCESS1.0 1.88° 1.24° Franklin et al. (2013) 

ACCESS1.3 1.88° 1.24° Franklin et al. (2013) 

IPSL-CM5A-MR 2.50° 1.26° Dufresne et al. (2013) 

INMCM4 2.00° 1.50° Volodin et al. (2010) 

MPI-ESM-LR 1.88° 1.88° Jungclaus et al. (2010) 

MPI-ESM-MR 1.88° 1.88° Jungclaus et al. (2010) 

CSIRO-Mk3.6.0 1.88° 1.88° Gordon et al. (2010) 

CMCC-CMS 1.88° 1.88° Scoccimarro et al. (2011) 

NorESM1-M 2.50° 1.88° Tjiputra et al. (2013) 

NorESM1-ME 2.50° 1.88° Tjiputra et al. (2013) 
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Table 2: Meta information on the satellite and reanalysis products. All products were resampled into 1 Lat/Lon degree using bilinear 

interpolation or spatial averaging in the paper. All data were accessed on 15 December 2018. 

Variable Version Time Span Spatial 

Resolution 

Data Availability Usage 

DSR CERES EBAF-surface 

Ed4.0 

2001.01–

2015.12 

1°×1° https://ceres.larc.nasa.go

v/order_data.php  

calibration 

DLR CERES EBAF-surface 

Ed4.0 

2001.01–

2015.12 

1°×1° https://ceres.larc.nasa.go

v/order_data.php  

calibration 

TOA albedo CERES TOA-surface 

Ed4.0 

2001.01–

2015.12 

1°×1° https://ceres.larc.nasa.go

v/order_data.php  

attribution & 

depressing 

effect 

AOD MOD/MYD08 C6.1 2001.01–

2015.12 

1°×1° https://earthengine.googl

e.com/  

attribution 

AOD SeaWIFS 1.0_L3M 1998.01–

2010.12 

1°×1° https://disc.gsfc.nasa.gov

/datasets?page=1  

attribution 

aerosol 

index 

TOMS & OMI Aerosol 

Index L3 

1980.01–

1993.12, 

1997.01–

2015.12 

1°×1.25° https://disc.gsfc.nasa.gov

/datasets?page=1  

attribution 

PM 2.5 Global Annual PM2.5 

Grids from MODIS, 

MISR and SeaWiFS 

AOD, v1 

2000.01–

2015.12 

0.01°×0.01° http://fizz.phys.dal.ca/~a

tmos/martin/?page_id=1

40  

attribution 

dust MERRA2 2000.01–

2015.12 

0.5°×0.625° https://disc.gsfc.nasa.gov

/datasets?page=1  

attribution 

cloud 

fraction 

MOD/MYD08 C6.1 2001.01–

2015.12 

1°×1° https://earthengine.googl

e.com/  

attribution 

cloud 

fraction 

Corrected ISCCP and 

PATMOS-X monthly 

cloud fraction 

1984.01–

2007.12 

1°×1° https://rda.ucar.edu/datas

ets/ds741.5/  

attribution 

TOA ASR DEEP-C TOA _ASR 

v02 

1985.01–

2015.12 

1°×1° http://www.met.reading.

ac.uk/~sgs02rpa/research

/DEEP-C/  

attribution 

https://doi.org/10.5194/acp-2019-553
Preprint. Discussion started: 10 September 2019
c© Author(s) 2019. CC BY 4.0 License.



25 

 

albedo GLASS albedo V05 2001.01–

2015.12 

0.05°×0.05° http://glass-

product.bnu.edu.cn  

depressing 

effect 

surface 

emissivity 

ASTER_GED v4.1 2001.01–

2015.12 

0.05°×0.05° https://lpdaac.usgs.gov/d

ataset_discovery/commu

nity/community_product

s_table/ag5kmmoh_v041  

depressing 

effect 

Variables: DSR, downward shortwave radiation; DLR, downward longwave radiation; TOA albedo, top of atmosphere albedo; 

AOD, aerosol optical depth; PM2.5, Particulate matter 2.5; ASR, absorbed solar radiation. Products’ name are illustrated in the 

Section 2.  680 
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Figure 1: Site distribution. Observations from three ground networks (Global Energy and Water Exchanges [GEWEX] Asian 

Monsoon Experiment [GAME], Coordinated Energy and Water Cycle Observation Project [CEOP] Asia-Australia Monsoon 685 
Project [CAMP], and Global Energy Balance Archive [GEBA]) are from 1960–2005. Vector layer data is free for academic use 

licensed by Database of Global Administrative Areas (GADM). Elevation data is provided by National Oceanic and Atmospheric 

Administration (NOAA) (GLOBE). 
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Figure 2: Scatterplot of site validation results from two ground networks: (a, b) downward shortwave radiation (DSR), (c, d) 690 
downward longwave radiation (DLR). 
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Figure 3: Trend comparison between calibrated downward radiation datasets and Shi and Liang (2013). Temporal variations over 

the Tibetan Plateau (TP) in (a) and (b) were averaged by the 5-year moving window in order to remove the impact of annual 

variability. 695 

 

Figure 4: Spatiotemporal variations in surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) 

over the Tibetan Plateau (TP) and its neighboring regions from 1850 to 2015. Temporal variations in (a) were averaged by the 10-

year moving window in order to remove the impact of annual variability. The trends of DSR (b) and DLR (c) are significant, with 

p-values < 0.01. Vector layer data is free for academic use licensed by GADM. 700 
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Figure 5: Temporal variation in detected factors from remote sensing products over the Tibetan Plateau (TP): (a) aerosol optical 

depth (AOD) and aerosol index, (b) Particulate matter (PM)2.5 and dust, (c) cloud fraction, and (d) top-of-atmosphere (TOA) 

albedo. 

 705 

 

Figure 6: (a) Temporal variations of the calibrated, anthropogenic aerosol–driven (AA-driven) and noAA-driven DSR. Temporal 

variations were averaged by a 10-year moving window to remove the impact of annual variability. (b) Scaling factors of the AA and 

noAA forcing simulation on downward shortwave radiation (DSR). 
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 710 

Figure 7: Relationships between variable changes at the seasonal scale from 1850 to 2015: (a) the decrease in downward shortwave 

radiation (DSR) and increase in air temperature, (b) precipitation change and aerosol optical depth (AOD) increase, (c) wind speed 

change and AOD increase.  

 

Figure 8: Temporal annual variation in air temperature, and air temperature with the depressing effect of aerosols removed in the 715 
summer season. 
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